88 research outputs found

    Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus

    Get PDF
    The rumen bacterium Ruminococcus albus binds to and degrades crystalline cellulosic substrates via a unique cellulose degradation system. A unique family of carbohydrate-binding modules (CBM37), located at the C terminus of different glycoside hydrolases, appears to be responsible both for anchoring these enzymes to the bacterial cell surface and for substrate binding

    Ruminococcal cellulosome systems from rumen to human

    Get PDF
    This article is protected by copyright. All rights reserved. The authors appreciate the kind assistance of Miriam Lerner (ImmunArray Ltd. Company, Rehovot, Israel) with experiments involving the MicroGrid II arrayer. This research was supported by a grant (No. 1349) to EAB also from the Israel Science Foundation (ISF) and a grant (No. 24/11) issued to RL by The Sidney E. Frank Foundation also through the ISF. Additional support was obtained from the establishment of an Israeli Center of Research Excellence (I-CORE Center No. 152/11) managed by the Israel Science Foundation, from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Weizmann Institute of Science Alternative Energy Research Initiative (AERI) and the Helmsley Foundation. The authors also appreciate the support of the European Union, Area NMP.2013.1.1-2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530 and an ERA-IB Consortium (EIB.12.022), acronym FiberFuel. HF and SHD acknowledge support from the Scottish Government Food Land and People programme and from BBSRC grant no. BB/L009951/1. In addition, EAB is grateful for a grant from the F. Warren Hellman Grant for Alternative Energy Research in Israel in support of alternative energy research in Israel administered by the Israel Strategic Alternative Energy Foundation (I-SAEF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic ChemistryPeer reviewedPostprin

    Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions

    Get PDF
    This work was supported in part by the European Union, Area NMP.2013.1.1–2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530, and by the EU Seventh Framework Programme (FP7 2007–2013) under the WallTraC project (Grant Agreement no 263916), and BioStruct-X (grant agreement no 283570). This paper reflects the author’s views only. The European Community is not liable for any use that may be made of the information contained herein. CMGAF is also supported by Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) through grants PTDC/BIA-PRO/103980/2008 and EXPL/BIA-MIC/1176/2012. EAB is also funded by a grant (No. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel and by a grant (No. 2013284) from the U.S.-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.Peer reviewedPublisher PD

    Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    Get PDF
    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment

    The aadE*-sat4-aphA-3 Gene Cluster of Mycoplasma bovirhinis HAZ141_2 Undergoes Genomic Rearrangements Influencing the Primary Promoter Sequence

    No full text
    The 54 kb GC-rich prophage region of Mycoplasma bovirhinis HAZ141_2 contains three structural ‘compartments’, one of which is a highly transmittable cluster of three genes, aadE-like (aadE*), sat4, and aphA-3. In this study, we characterized recombination events and their consequences occurred within the aadE*-sat4-aphA-3 containing region. Analysis of this region revealed direct repeats (DRs) of 155 and invert repeats (IRs) of 197 base pairs (bps) each, flanking and overlapping with the primary promoter P* located upstream of the aadE*. Two recombination events, including inversions via both 197 and 155-bp IRs (the latter become inverted after the initial 197-bp IRs associated inversion) and the excision of the aadE*-sat4-aphA-3 cluster, were confirmed. Inversion via 155-IRs results in changes within the P* promoter region. Using Escherichia coli JM109 carrying plasmids containing derivatives of the aadE*-sat4-aphA-3 cluster, we validated the expression of those genes from different promoters. Our results showed no difference in the minimal inhibitory concentrations (MICs) to kanamycin and neomycin and only 2-fold decrease in MIC (from 512 to 256 μg/mL) to nourseothricin between the wild type and a P* derivative promoter. However, the MICs to kanamycin and neomycin were at least 4-fold lower in the construct where aphA-3 expressed under its P2 promoter (128 µg/mL) in comparison to the construct where aphA-3 expressed under P1″ promoter located within the sat4 gene (512–1024 µg/mL). PCR confirmed the excision of the aadE*-sat4-aphA-3 cluster via 197- and 155-bp DRs, but no selection of antibiotic-sensitive M. bovirhinis were obtained after 100 passages in kanamycin-free medium
    • …
    corecore